Operational Dynamic Load Testing for Repair Recommendations, Case Study of Access Road to Vehicle Weight in Motion

Authors

  • Heri Khoeri Universitas Muhammadiyah Jakarta Author
  • Dini Sofiana Universitas Brawijaya Author
  • Panji Nugroho PT. Hesa Laras Cemerlang Author
  • Rauzan Fikri Muthohari PT. Hesa Laras Cemerlang Author

DOI:

https://doi.org/10.20884/1.dinarek.2024.20.2.60

Keywords:

frequency, deflection, modal, damping, dynamic loading tes

Abstract

The indication of inaccuracies in vehicle weight measurement using Weight in Motion (WIM) technology on mining roads has been identified due to the non-fulfillment of the design criteria required by the WIM manufacturer. This study aims to identify the gap between the actual pavement conditions and the design criteria and to design improvements to eliminate this gap. The method employed involves dynamic load testing, followed by processing the test data with operational modal analysis (OMA) to obtain dynamic parameters that will serve as a reference for calculating the pavement capacity. From OMA, a natural structural frequency of 26.342 Hz was obtained, while the theoretical calculation based on the design criteria was 29.481 Hz. This frequency decrease indicates structural damage of 10.65% and a capacity reduction of 26.8% from the design criteria. This finding is reinforced by a critical damping ratio of 5.25%, which is higher than the damping for intact concrete, ranging between 2%-5%. This indicates energy dissipation through concrete cracks. It is recommended to inject the cracks in the existing pavement with a cement base and perform a 130 mm overlay with mortar grout (fc’= 50 MPa) with one layer of M12 wire mesh. The connection with the old pavement will use concrete bonding and D13-600/600 chemical anchors. With this improvement, the structural capacity will become 104% of the design criteria.

Downloads

Download data is not yet available.

References

M. S. Cao, G. G. Sha, Y. F. Gao, and W. Ostachowicz, “Structural damage identification using damping: a compendium of uses and features,” Smart Mater Struct, vol. 26, no. 4, p. 043001, Apr. 2017, doi: 10.1088/1361-665X/aa550a.

D. Feng and M. Q. Feng, “Computer vision for SHM of civil infrastructure: From dynamic response measurement to damage detection – A review,” Eng Struct, vol. 156, pp. 105–117, Feb. 2018, doi: 10.1016/j.engstruct.2017.11.018.

X. Peng, Q. Yang, F. Qin, and B. Sun, “Structural Damage Detection Based on Static and Dynamic Flexibility: A Review and Comparative Study,” Coatings, vol. 14, no. 1, p. 31, Dec. 2023, doi: 10.3390/coatings14010031.

O. Avci, O. Abdeljaber, S. Kiranyaz, M. Hussein, M. Gabbouj, and D. J. Inman, “A review of vibration-based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications,” Mech Syst Signal Process, vol. 147, p. 107077, Jan. 2021, doi: 10.1016/j.ymssp.2020.107077.

F. Bin Zahid, Z. C. Ong, and S. Y. Khoo, “A review of operational modal analysis techniques for in-service modal identification,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 42, no. 8. Springer, Aug. 01, 2020. doi: 10.1007/s40430-020-02470-8.

M. Ghalishooyan and A. Shooshtari, “Operational Modal Analysis Techniques and Their Theoretical and Practical Aspects: A Comprehensive Review and Introduction,” in 6th International Operational Modal Analysis Conference, IOMAC’15, Gijón, Spain: IOMAC’15, May 2015. [Online]. Available: https://www.researchgate.net/publication/281786721

J. Kang, L. Liu, S.-D. Zhou, and Y.-P. Shao, “A novel time-domain representation of transmissibility and its applications on operational modal analysis in the presence of non-white stochastic excitations,” J Sound Vib, vol. 457, pp. 157–180, Sep. 2019, doi: 10.1016/j.jsv.2019.05.047.

M. Maddipour Farrokhifard, M. Hatami, and V. M. Venkatasubramanian, “Performance of Stochastic Subspace Identification Methods in Presence of Forced Oscillations,” in 2019 International Conference on Smart Grid Synchronized Measurements and Analytics (SGSMA), IEEE, May 2019, pp. 1–8. doi: 10.1109/SGSMA.2019.8784613.

F. Liu, J. Wang, M. Li, F. Gu, and A. D. Ball, “Operational Modal Analysis of Y25 Bogie via Stochastic Subspace Identification for the Condition Monitoring of Primary Suspension Systems,” in ICDAS: International Conference on Damage Assessment of Structures, M. Abdel Wahab, Ed., Porto, Portugal: Springer, Jul. 2020, pp. 166–181. doi: 10.1007/978-981-13-8331-1_12.

Y. Xu, J. M. W. Brownjohn, and D. Hester, “Enhanced sparse component analysis for operational modal identification of real-life bridge structures,” Mech Syst Signal Process, vol. 116, pp. 585–605, Feb. 2019, doi: 10.1016/j.ymssp.2018.07.026.

H. Khoeri, S. W. Alisjahbana, and P. Nugroho, “Uji Beban Dinamik dan Analisis Modal Operasional Jembatan Baja Komposit Underpass Bekambit,” Dinamika Rekayasa, vol. 20, no. 1, pp. 65–75, Jan. 2024, doi: 10.20884/1.dinarek.2024.20.1.20.

A. Ali, T. Sandhu, and M. Usman, “Ambient Vibration Testing of a Pedestrian Bridge Using Low-Cost Accelerometers for SHM Applications,” Smart Cities, vol. 2, no. 1, pp. 20–30, Jan. 2019, doi: 10.3390/smartcities2010002.

M. Salehi, S. M. Esfarjani, and M. Ghorbani, “Modal Parameter Extraction of a Huge Four Stage Centrifugal Compressor Using Operational Modal Analysis Method,” Latin American Journal of Solids and Structures, vol. 15, no. 3, pp. 1–11, May 2018, doi: 10.1590/1679-78254117.

S. Gres, P. Andersen, C. Hoen, and L. Damkilde, “Orthogonal Projection-Based Harmonic Signal Removal for Operational Modal Analysis,” 2019, pp. 9–21. doi: 10.1007/978-3-319-74476-6_2.

E. Ercan, “Assessing the impact of retrofitting on structural safety in historical buildings via ambient vibration tests,” Constr Build Mater, vol. 164, pp. 337–349, Mar. 2018, doi: 10.1016/j.conbuildmat.2017.12.154.

B. W. Hailesilassie, L. Koch, F. Koke, J. P. Manager, and S. Road&traffic, “Influence of road properties on Weigh In Motion performance,” 2019. [Online]. Available: www.kistler.com

P. Van Overschee and B. De Moor, Subspace Identification for Linear Systems. Boston, MA: Springer US, 1996. doi: 10.1007/978-1-4613-0465-4.

A. H. Purboyo and I. Zarkasi, “Akuisisi Data Vibrasi Uji DInamik Jembatan,” Jurnal HPJI, vol. 7, no. 2, pp. 79–96, Jul. 2021, doi: 10.26593/jhpji.v7i2.5053.79-96.

Direktorat Jenderal Bina Marga Departemen Pekerjaan Umum Republik Indonesia, Penilaian Kondisi Jembatan untuk Bangunan atas dengan Cara Uji Getar. Pt T-05-2002-B. Pedoman Konstruksi dan Bangunan. 2002.

H. Khoeri, S. W. Alisjahbana, J. Widjajakusuma, and N. Najid, “Estimasi Lendutan Pelat Untuk Menghitung Kapasitas Beban Dengan Akurasi Tinggi Menggunakan Uji Getar,” Konstruksia, vol. 14, no. 2, pp. 175–188, Jul. 2023, doi: 10.24853/jk.14.2.175-188.

B. W. Hailesilassie, L. Koch, F. Koke, J. P. Manager, and S. Road&traffic, “Influence of road properties on Weigh In Motion performance.” [Online]. Available: www.kistler.com

J. K. Lee, S. Jeong, and J. Lee, “Natural frequencies for flexural and torsional vibrations of beams on Pasternak foundation,” Soils and Foundations, vol. 54, no. 6, pp. 1202–1211, Dec. 2014, doi: 10.1016/j.sandf.2014.11.013.

A. K. Chopra, Dynamics of Structures: Theory and Applications to Earthquake Engineering. in Civil Engineering and Engineering Mechanics Series. Prentice Hall, 2012.

H. Khoeri and S. W. Alisjahbana, “Pemeriksaan Getaran Struktur dan Rekomendasi Perkuatan untuk Peningkatan Kapasitas Beban dan Pengurangan Getaran,” Konstruksia, vol. 15, no. 1, p. 79, Dec. 2023, doi: 10.24853/jk.15.1.79-96.

S. Shahzad, H. Yamaguchi, R. Takanami, and S. Asamoto, “Detection of Corrosion-Induced Damage in Reinforced Concrete Beams Based on Structural Damping Identification,” in Proceedings of the Thirteenth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-13), Sapporo, Japan, Sep. 2013. Accessed: Feb. 24, 2024. [Online]. Available: http://hdl.handle.net/2115/54415

Downloads

Published

2024-07-31

How to Cite

Operational Dynamic Load Testing for Repair Recommendations, Case Study of Access Road to Vehicle Weight in Motion. (2024). Jurnal Ilmiah Dinamika Rekayasa, 20(2), 173-182. https://doi.org/10.20884/1.dinarek.2024.20.2.60